
Chapter 1 

Fundamental Concepts: Vectors 



1.1	Scalar	and	Vector	Quantities	

5	Km	away	from	School	



A	Scalar	Quantity	1

A scalar is a physical quantity that has magnitude only ( e.g. mass).

A scalar is completely specified by a single number and  in appropriate units.

A scalar is independent of any coordinates chosen to describe the 
motion of the system.

temperature.Examples 

density volume

energy



A	Vector	Quantity	2

A Vector is a physical quantity that has magnitude and direction (e.g. displacement).

A Vector quantity represents by the value and direction.

A Vector quantity depends on the coordinates system.

Examples 

Velocity 

displacement

Acceleration 

Force 



1.2 Vector Algebra

A = A# + A% + A&

An arrow, customarily designates a vector.

Vector quantities is simply denoted by boldface type.( e.g A)



Equality of Vectors1

The two vectors are equal only if their respective components are equal.

A = B

BA

A = B

A#, A%, A& = B#,B%,B&

A# = B#



Vector	Addition2

y

x

A#

A%

B#

B%

A

B
C

C = A + B

C%

C#

A + B = (A# + B#)+(A% + B%)

C							 =						C# +						C%



Multiplication by a Scalar3

If c is a scalar and A is a vector,  then:

cA = c	 A# + A% + A& = cA# + cA% + cA&

A

cA

Let c = 2

A

cA

Let c = −1Example 1 Example 2

• cA is	parallel	to	A
• c times	the	length	

• cA is	reverse	of	A



Vector	Subtraction4

6 − 4 = 2

6 + (−4) = 2

Differences between A	and	B

A − B = A + −1 	B
= (A#−B#, A% − B%, A& − B&)

A
B −B

A + (−B)

−B



The	Null	Vector5

The vector 𝐎 = (0,0,0) is called the null vector. The direction of 𝐎 is undefined.

A − A = 0 𝐎=0

The Commutative Law of Addition6

This law holds for vectors A + B = B + A	

A# + B# = B#+A#

Similarly for the y and z components.



The Associative Law7
The associative law is also true, because

𝐀 + 𝐁+ 𝐂 = 𝐀𝐱 + 𝐁𝐱 + 𝐂𝐱 ;𝐀𝐲 + 𝐁𝐲 + 𝐂𝐲 	; (𝐀𝐳+ 𝐁𝐳 + 𝐂𝐳

= 𝐀𝐱 + 𝐁𝐱 + 𝐂𝐱; 𝐀𝐲 + 𝐁𝐲 + 𝐂𝐲; 𝐀𝐳 + 𝐁𝐳 + 𝐂𝐳

= 𝐀+ 𝐁 + 𝐂

The Distributive Law8
𝐜	 𝐀 + 𝐁 = 𝐜(𝐀𝐱 + 𝐁𝐱;	𝐀𝐲 + 𝐁𝐲	;	𝐀𝐳 + 𝐁𝐳)

=	𝐜 𝐀𝐱 + 𝐁𝐱 , 𝐜 𝐀𝐲 + 𝐁𝐲 ,𝐜(	𝐀𝐳 + 𝐁𝐳)

= c𝐀𝐱 + 𝐜𝐁𝐱	,c𝐀𝐲 + 𝐜𝐁𝐲 , c𝐀𝐳 + 𝐜𝐁𝐳

= 𝐜𝐀+ 𝐜𝐁



Magnitude of a Vector9

The magnitude of a vector A, denoted by A or 𝐴

The square root of the sum of the squares of the components.

𝐴 = 𝐴 = 𝐴CD + 𝐴ED + 𝐴FD



Unit Coordinate Vectors10

A unit vector is a vector whose magnitude is unity.

Unit vectors are often designated by the symbol e.

𝑒C = (1,0,0)

𝑒E = (0,1,0)

𝑒F = (0,0,1)

A = e#A# + e%A% + e&A&

𝑖 = 𝑒C

j= 𝑒E

k= 𝑒F



Example 1.1 
Find the sum and the magnitude of the two vectors A=(1,0,2) and B=(0,1,1)

A + B = 1,0,2 + (0,1,1) = 1,1,3

A + B = 1D + 1D + 3K = 11

H. W

Express the differences in 𝒊𝒋𝒌	and the magnitude of the new vector 𝑨 −𝑩 of 
the two vectors A=(1,0,2) and B=(0,1,1)



Example 1.2 
A helicopter flies 100 m vertically upward, then 500 m horizontally east, then
1000 m horizontally north. How far is it from a second helicopter that started
from the same point and flew 200 m upward, 100 m west, and 500 m north?

Choosing up, east, and north as basis directions. 

The final position of the first helicopter is expressed vectorially as A = (100,500,1000).

The final position of the second helicopter is expressed vectorially as B =(200, -100, 500).  

Hence, the distance between the final positions is given by the 
expression.



1.3  Scalar Product

Given two vectors A and B, the scalar product or "dot" product, A: B, is the scalar 
defined by the equation

Scalar multiplication is commutative 𝐴. 𝐵 = 𝐵. 𝐴

Scalar multiplication is also distributive 𝐴. 𝐵 + 𝐶 = 𝐴. 𝐵 + 𝐴.𝐶



Evaluating a dot product between two vectors.

(𝐴, 0,0)

(𝐵 cos𝜃 , 𝐵 sin𝜃 , 0)

𝐴. 𝐵 = 𝐴C𝐵C = 𝐴	(𝐵 cos𝜃)

𝐴. 𝐵 = 𝐴 𝐵 cos𝜃

cos𝜃 =
𝐴. 𝐵
𝐴 𝐵

𝜃 = 𝑐𝑜𝑠[\
𝐴. 𝐵
𝐴 𝐵



𝒊. 𝒊 = 𝒋. 𝒋 = 𝒌. 𝒌 = 𝟏
𝒊. 𝒋 = 𝒊. 𝒌 = 𝒋. 𝒌 = 𝟎

From the definitions of the unit coordinate vectors 𝑖, 𝑗, 𝑎𝑛𝑑	𝑘,  it is clear that the 
following relations hold

In addition , we can write any vector associated with its unit vectors by this
form:

𝐴 = 𝑖𝐴C + 𝑗𝐴E + k𝐴F



Example 1.3.1 
Suppose that an object under the action of a constant force undergoes a linear 
displacement. By definition, the work ∆𝑊	done by the force is given by the product 
of the component of the force 𝐹 in the direction of multiplied by the magnitude of 
the displacement; that is,

∆𝑊 = 𝐹. ∆s

∆𝑊 = (𝐹 cos𝜃) ∆s



Example 1.3.2 
Consider the triangle whose sides are A, B, and C, as shown in the Figure below. 
Then C =  A + B. Take the dot product of C with itself,

𝐶. 𝐶 = 𝐴 + 𝐵 . (𝐴 + 𝐵)

𝐶. 𝐶 = 𝐴. 𝐴 + 2𝐴. 𝐵 + 𝐵.𝐵

By Replacing 𝐴. 𝐵 with 𝐴𝐵 cos𝜃 which is the familiar law of cosines.

𝐶D = 𝐴D + 2𝐴𝐵 cos𝜃 + 𝐵D



Example 1.3.3 

Find the cosine of the angle between a long diagonal and an adjacent face diagonal 
of a cube.

z

y

x

(1,1,1) long diagonal

𝐴

adjacent face diagonal

𝐵 (1,1,0)

cos 𝜃 =
𝐴. 𝐵
𝐴 𝐵

𝐴 = 1D + 1D + 1D = 3

𝐵 = 1D + 1D + 0D = 2

𝐴. 𝐵 = 𝑖 + 𝑗 + 𝑘 . 𝑖 + 𝑗 = 1 + 1+ 0 = 2

cos𝜃 =
2	
2 3

= 0.865



Example 1.3.4

The vector 𝒂𝒊 + 𝒋 − 𝒌	is perpendicular to the vector 𝒊 + 𝟐𝒋 − 𝟑𝒌. What is the value
of 𝑎?

If the vectors are perpendicular to each other, their dot product must vanish 
(cos 90 = 0).

(𝑎𝑖 + 𝑗 − 𝑘). (𝑖 + 2𝑗 − 3𝑘)=0

𝑎 + 2 + 3 = 0

𝑎 = −5



1.4 The Vector Product

𝐴×𝐵 =
𝑖 𝑗 𝑘
𝐴C 𝐴E 𝐴F
𝐵C 𝐵E 𝐵F

𝐴×𝐵 = 𝑖 𝐴E𝐵F − 𝐴F𝐵E + 𝑗(𝐴F𝐵C-𝐴C𝐵F)+𝑘(𝐴C𝐵E-𝐴E𝐵C)

It can be shown that the following rules hold for cross multiplication:

(𝐴×𝐵) = −(𝐵×𝐴)

𝐴× 𝐵 + 𝐶 = 𝐴×𝐵 + 𝐴×C

n 𝐴×𝐵 = 𝑛𝐴 ×𝐵 = 𝐴×	(𝑛𝐵)



i×i = j×j = k×k = 0

j×k = i = −k×j

i×j = k = −j×i

k×i = j = −i×k

𝐴×𝐵 = 𝐴𝐵 sin 𝜃

The cross product of two vectors.



Example 1.4.1

Given the two vectors A = 2i + j − k , B = i − j + 2k, find A×B.

In this case it is convenient to use the determinant form

A×B =
i j k
2 1 −1
1 −1 2

= 𝑖 1 −1
−1 2 − 𝑗 2 −1

1 2 + k 2 1
1 −1

A×B = i 2 − 1 − j 4 + 1 + k(−2 − 1)

A×B = i − 5j − 3k



Example 1.4.2

Find a unit vector normal to the plane containing the two vectors A and B  
A = 2i + j − k , B = i − j + 2k	

𝑛 =
𝐴×𝐵
𝐴×𝐵

=
𝑖 − 5𝑗 − 3𝑘
1D + 5D + 3D

=
𝑖 − 5𝑗 − 3𝑘

35

=
𝑖
35
−

5𝑗
35

−
3𝑘
35



Example 1.4.3

Show by direct evaluation that A x B is a vector with direction perpendicular to A 
and B and magnitude AB sinθ.

(𝐵 cos𝜃 , 𝐵 sin 𝜃 , 0)

(𝐴, 0,0)

A×B =
i j k
A 0 0

B cos θ Bsin θ 0

= kABsin θ



HWs

1

2

3



1.5 Triple	Products

The expression A	. (B×C) is called the scalar triple product of A, B, and C.

We can see that the scalar triple product may be written as matrix

A. (B×C) =
A# A% A&
B# B% B&
C# C% C&

A. (B×C) = A×B . C

The expression A	×(B×C) is called the Vector triple product of A, B, and C.

A	× B×C = B A.C − C(A. B)



Example 1.5.1



1.6 Change of Coordinate System: The Transformation Matrix
In this section we show how to represent a vector in different coordinate 
systems. Consider the vector A expressed relative to the triad 𝑖𝑗𝑘:

A = iA# + jA% + kA&
Relative to a new triad 𝑖q𝑗q𝑘q having a different orientation from that of  𝑖𝑗𝑘, the 
same vector A is expressed as

A = iqA#r + jqA%r + kqA&r

A#r = A. iq = (i. iq)A# + (j. iq)A% + (k. iq)A&

A%r = A. jq = (i. jq)A# + (j. jq)A% + (k. jq)A&

A&r = A. kq = (i. kq)A# + (j. kq)A% + (k.kq)A&

Now the dot product 𝐴. 𝑖q is just 𝐴Cr : the projection of 𝐴 on the unit vector 𝑖q. 



The scalar product i. iq , i. jq and so on are called the coefficients of transformation. 

A# = A. i = iq. i A#r + jq. i A%r + kq. i A&r

A% = A. j = iq. j A#r + jq. j A%r + kq. j A&r

A& = A. k = iq. k A#r + jq. k A%r + kq. k A&r

A#r
A%r
A&r

=
i. iq j. iq k. iq
i. jq j. jq k. jq
i. kq j. kq k. kq

A#
A%
A&

The unprimed components are similarly expressed as 

The equation of transformation are conveniently expressed in matrix notation. 



A#r
A%r
A&r

=
i. iq j. iq k. iq
i. jq j. jq k. jq
i. kq j. kq k. kq

A#
A%
A&

Transformation matrix 
z

y

x

k

j
i

y’

𝜃
z’

x’
𝜃

k’

i’
j’

i. iq = (1)(1) cos θ = cosθ

j. iq = 1 1 cos 90 = 0

k. iq = 1 1 cos(90 + θ)
= cos	90	cos	θ − sin	90	sin	 θ
= −sin	 θ

cos 𝜃 0 − sin𝜃
0 1 0

sin 𝜃 0 cos 𝜃



cos𝜃 sin 𝜃 0
−sin 𝜃 cos𝜃 0
0 0 1

Show	that	for	the	rotation	around	𝒛,	the	transformation	matrix	is	given	by		

1 0 0
0 cos𝜃 sin𝜃
0 −sin 𝜃 cos𝜃

HWs

1

Show	that	for	the	rotation	around	𝒙,	the	transformation	matrix	is	given	by		2



Express the vector 𝐴 = 3𝑖 + 2𝑗 + 𝑘 in terms of the triad 𝑖q𝑗q𝑘q, where the 𝑥q𝑦q − 𝑎𝑥𝑒𝑠
are rotated 45w	around z-axis, with the 𝑧- and 𝑧q-axes coinciding as shown in the 
figure below, we have for the coefficients of transformation 𝑖. 𝑖q = cos45w and so on; 

Example 1.6.1

A#r
A%r
A&r

=
i. iq j. iq k. iq
i. jq j. jq k. jq
i. kq j. kq k. kq

A#
A%
A&

i. iq =
1
2

j. iq =
1
2 k. iq = 0

i. jq = −
1
2

j. jq =
1
2 k. jq = 0

i. kq = 0 j. kq = 0 k. kq = 1

cos θ sinθ 0
−sinθ cos θ 0
0 0 1

Around	𝑧



A#r
A%r
A&r

=

1
2

1
2

0

−
1
2

1
2

0

0 0 1

3
2
1

𝐴Cr =
\
D

(3)+ \
D

(2)+(0)(1)

𝐴Er = − \
D

(3)+ \
D

(2)+(0)(1)

𝐴Fr = (0) (3)+(0) (2)+(1)(1)

𝐴Cr =
K
D

+ D
D

𝐴Cr =
5
2

𝐴Er = − K
D

+ D
D 𝐴Er = −

1
2

𝐴Fr = 1

A =
5
2
iq −

1
2
jq + kqAfter rotation 

Before rotation A = 3i + 2j + k



HWs



Consider a vector A, whose components are function of single variable u, is usually 
time t, the vector may represent position, velocity, and so on. 

𝐴 𝑢 = 𝑖	𝐴C 𝑢 + 𝑗𝐴E 𝑢 + 𝑘𝐴F(𝑢)

So the derivative of A can be expressed as following 

𝑑𝐴
𝑑𝑢 = lim

∆|→~
(𝑖	
∆𝐴C
∆𝑢 + 𝑗	

∆𝐴E
∆𝑢 + 𝑘	

∆𝐴F
∆𝑢 )

𝑑𝐴
𝑑𝑢 = 𝑖	

𝑑𝐴C
𝑑𝑢 + 𝑗	

𝑑𝐴E
𝑑𝑢 + 𝑘	

𝑑𝐴F
𝑑𝑢

1.7	Derivative	of	a	vector	

This means, the derivative of a vector is a vector whose Cartesian components 
are ordinary derivatives.



Now, below are the vector rules of vector differential. 

𝑑
𝑑𝑢 𝐴 + 𝐵 =

𝑑𝐴
𝑑𝑢 +

𝑑𝐵
𝑑𝑢

𝑑	(𝑛𝐴)
𝑑𝑢 =

𝑑𝑛
𝑑𝑢𝐴 + 𝑛

𝑑𝐴
𝑑𝑢

𝑑	(𝐴. 𝐵)
𝑑𝑢 =

𝑑𝐴
𝑑𝑢 . 𝐵 + 𝐴.

𝑑𝐵
𝑑𝑢

𝑑	(𝐴×𝐵)
𝑑𝑢 =

𝑑𝐴
𝑑𝑢 ×𝐵 + 𝐴×

𝑑𝐵
𝑑𝑢



𝑟 = 𝑖	𝑥 + 𝑗𝑦 + 𝑘𝑧 𝑻𝒉𝒆	𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏	𝒗𝒆𝒄𝒕𝒐𝒓	

1.8	 Position	of	a	vector:	velocity	and	Acceleration	in	Rectangular	
coordinates	

As	𝑥 = 𝑥 𝑡 , 𝑦 = 𝑦 𝑡 , 𝑧 = 𝑧(𝑡)
are the components ( of the position vector ) of moving particle 

So the velocity can be written as following :

𝑉 =
𝑑𝑟
𝑑𝑡 = 𝑖

𝑑𝑥
𝑑𝑡 + 𝑗

𝑑𝑦
𝑑𝑡 + 𝑘

𝑑𝑧
𝑑𝑡

𝑉 = �̇� = 𝑖�̇� + 𝑗�̇� + 𝑘�̇�
The magnitude of the velocity is called the speed. In rectangular 
components the speed is just

𝜐 = 𝑉 = �̇�D + �̇�D + �̇�D

where the dots indicate differentiation with respect to t.



The time derivative of the  velocity is called the acceleration. Denoting the 
acceleration with 𝑎, we have

𝑎 =
𝑑𝑣
𝑑𝑡 =

𝑑D𝑟
𝑑𝑡D

In rectangular components,

𝑎 = 𝑖�̈� + 𝑗�̈� + 𝑘�̈�

Thus, acceleration is a vector quantity whose components, in rectangular 
coordinates, are the second derivatives of the positional coordinates of a 
moving particle.



Consider the motion of a particle (projectile) in a parabolic path which is represented 
by the equation 

𝑟 𝑡 = 𝑖𝑏𝑡 + 𝑗 𝑐𝑡 −
𝑔𝑡D

2 + 𝑘0

Find the velocity and acceleration vectors as well as the speed of this particle.

Example 1.8.1

𝑎

𝑣

𝑟

This represents motion in the 𝑥𝑦	 plane,
because the z component is constant and
equal to zero. The velocity v is obtained by
differentiating with respect to t, namely,

𝑣 =
𝑑𝑟
𝑑𝑡 = 𝑖𝑏 + 𝑗(𝑐 − 𝑔𝑡)

Projectile Motion



Thus, 𝑎 is in the negative 𝑦 direction and has the constant magnitude 𝑔.

The speed 𝑣 varies with t  according to the equation

𝜐 = [𝑏D + 𝑐 − 𝑔𝑡 D]\/D

The acceleration, likewise, is given by

𝑎 =
𝑑𝑣
𝑑𝑡 = −𝑗𝑔



Example 1.8.2
Consider a particle moving in a circular path with constant speed, the position vector 
is given by 

𝑟 = 𝑖𝑏 sin𝜔𝑡 + 𝑗𝑏 cos𝜔𝑡
Where 𝜔 is constant. Find the distance, velocity vector, speed, and  acceleration for 
this particle. Show that, in the case of circular motion, the acceleration is 
perpendicular to the velocity. Write 𝒂 in terms of 𝒓.

The distance from the origin remains constant:

𝑟 = 𝑟 = (𝑏D𝑠𝑖𝑛D𝜔𝑡 + 𝑏D𝑐𝑜𝑠D𝜔𝑡)\/D

𝑟 = 𝑟 = (𝑏D)\/D	(𝑠𝑖𝑛D𝜔𝑡 + 𝑐𝑜𝑠D𝜔𝑡)\/D

So the path is a circle of radius b centered at the origin

𝑜
𝑥

𝑦

Circular Motion

𝑟 = 𝑏 distance



Differentiating r, we find the velocity vector

The particle traverses its path with constant speed:

𝑣 = 𝜐 = (𝑏D𝜔D𝑐𝑜𝑠D𝜔𝑡 + 𝑏D𝜔D𝑠𝑖𝑛D𝜔𝑡)\/D

The acceleration is

In this case the acceleration is perpendicular to the velocity, because the dot 
product of 𝑣 and  a vanishes:

𝑣. 𝑎 = 𝑖𝑏𝜔cos𝜔𝑡 − 𝑗𝑏𝜔 sin𝜔𝑡 . (−𝑖𝑏𝜔D sin 𝜔𝑡 − 𝑗𝑏𝜔D cos𝜔𝑡)

𝑣 =
𝑑𝑟
𝑑𝑡 = 𝑖𝑏𝜔 cos𝜔𝑡 − 𝑗𝑏𝜔sin𝜔𝑡 Velocity vector

𝜐 = 𝑏𝜔 Speed

𝑎 =
𝑑𝑣
𝑑𝑡 = −𝑖𝑏𝜔D sin𝜔𝑡 − 𝑗𝑏𝜔D cos𝜔𝑡 Acceleration



𝑣. 𝑎 = 𝑖𝑏𝜔cos𝜔𝑡)(−𝑖𝑏𝜔D sin 𝜔𝑡 + (−𝑗𝑏𝜔sin 𝜔𝑡)(−𝑗𝑏𝜔D cos𝜔𝑡)

𝑣. 𝑎 = −𝑏D𝜔K sin𝜔𝑡 cos𝜔𝑡 + 𝑏D𝜔K sin𝜔𝑡 cos𝜔𝑡

So 𝑎 and 𝑟 are oppositely directed, that is , 𝑎 always points toward the center 
of the circular path.  

𝑎 =
𝑑𝑣
𝑑𝑡 = −𝑖𝑏𝜔D sin𝜔𝑡 − 𝑗𝑏𝜔D cos𝜔𝑡

Known 

𝑟 = 𝑖𝑏 sin𝜔𝑡 + 𝑗𝑏 cos𝜔𝑡

𝑎 = −𝜔D(𝑖𝑏 sin 𝜔𝑡 + 𝑗𝑏 cos𝜔𝑡)

𝑣. 𝑎 = 0 The acceleration is perpendicular to the velocity

𝑎 = −𝜔D𝑟 𝒂 in terms of 𝒓



Example 1.8.3
Consider a rolling wheel following position vector 𝑟 = 𝑟\ + 𝑟D	 in which                 
𝑟\ = 𝑖𝑏𝜔𝑡 + 𝑗𝑏 and  𝑟D = 𝑖𝑏 sin 𝜔𝑡 + 𝑗𝑏 cos𝜔𝑡, where 𝑟\ represents a point moving 
along the line 𝑦 = 𝑏 at constant velocity and 𝑟D is just the position vector for the 
circular motion ( see example 1.8.2). Find the velocity of the point 𝑃	.

c

𝜐\
𝑉 = 2𝜐\

𝜐\

𝜐D 𝑉

𝜐\𝜐D

𝜐\

𝜐D
𝑉

𝑉 = 0

𝜐\

𝑟𝑟\

c
𝑟D

𝜐D

Rolling Wheel



𝑟\ = 𝑖𝑏𝜔𝑡 + 𝑗𝑏

𝑟D = 𝑖𝑏 sin 𝜔𝑡 + 𝑗𝑏 cos𝜔𝑡

𝜐\ =
𝑑𝑟\
𝑑𝑡 = 𝑖𝑏𝜔 𝜐D =

𝑑𝑟D
𝑑𝑡 = 𝑖𝑏𝜔 cos𝜔𝑡 − 𝑗𝑏𝜔 sin𝜔𝑡

𝑟 = 𝑟\ + 𝑟D

𝜐 = 𝜐\ + 𝜐D 𝜐 = 𝑖𝑏𝜔+𝑖𝑏𝜔 cos𝜔𝑡 − 𝑗𝑏𝜔sin𝜔𝑡

𝜐 = 𝑖(𝑏𝜔+𝑏𝜔 cos𝜔𝑡) − 𝑗𝑏𝜔sin 𝜔𝑡

𝐀𝐜𝐜𝐞𝐥𝐞𝐜𝐫𝐚𝐭𝐢𝐨𝐧	?H.W.
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1.9	 Velocity and Acceleration in Plane Polar Coordinates
It is often convenient to employ polar coordinates 𝑟, 𝜃 to express the position of a 
particle moving in a plane. Vectorially, the position of the particle can be written 
as the product of the radial distance 𝑟 by a unit radial vector 𝑒£:

𝐫 = 𝑟𝑒£
As the particle moves, both 𝑟 and 𝑒£ vary; thus, they are both functions of the 
time.  Hence, if we differentiate with respect to 𝑡, we have

𝑣 =
𝑑𝒓
𝑑𝑡 = �̇�𝑒£ + 𝑟

𝑑𝑒£
𝑑𝑡



∆𝜃∆𝜃

∆𝑒£≅ ∆𝜃

∆𝑒£= 𝑒¥∆𝜃

𝑑𝑒£
𝑑𝑡 = 𝑒¥

𝑑𝜃
𝑑𝑡

∆𝑒¥≅ ∆𝜃

∆𝑒¥= −𝑒£∆𝜃

𝑑𝑒¥
𝑑𝑡 = −𝑒£

𝑑𝜃
𝑑𝑡



𝑣 =
𝑑𝑟
𝑑𝑡 = �̇�𝑒£ + 𝑟

𝑑𝑒£
𝑑𝑡

𝑣 =
𝑑𝑟
𝑑𝑡 = �̇�𝑒£ + 𝑟𝑒¥

𝑑𝜃
𝑑𝑡 𝑣 =

𝑑𝑟
𝑑𝑡 = �̇�𝑒£ 		+ 			𝑟�̇�𝑒¥

𝑑𝑒£
𝑑𝑡 = 𝑒¥

𝑑𝜃
𝑑𝑡

𝑑𝑒¥
𝑑𝑡 = −𝑒£

𝑑𝜃
𝑑𝑡

𝑣£ = �̇� 𝑣¥ = 𝑟�̇�

Radial component Transverse component



𝑣 = �̇�𝑒£ 		+ 			𝑟�̇�𝑒¥

To find the acceleration vector, we take the derivative of the velocity with respect 
to time. This gives

𝑎 =
𝑑𝜐
𝑑𝑡

= �̈�𝑒£ + �̇�
𝑑𝑒£
𝑑𝑡 + (𝑟�̈� + �̇�𝜃)̇𝑒¥ + 𝑟�̇�

𝑑𝑒¥
𝑑𝑡

𝑑𝑒£
𝑑𝑡 = 𝑒¥

𝑑𝜃
𝑑𝑡

𝑑𝑒¥
𝑑𝑡 = −𝑒£

𝑑𝜃
𝑑𝑡



𝑎 = �̈�𝑒£ + �̇�(𝑒¥�̇�) + (𝑟�̈� + �̇�𝜃)̇𝑒¥ + 𝑟�̇�(−𝑒£�̇�)

𝑎 = �̈�𝑒£ + �̇��̇�𝑒¥ + (𝑟�̈� + �̇�𝜃)̇𝑒¥ − 𝑟𝑒£�̇�D

𝑎 = (�̈� − 𝑟�̇�D)𝑒£ + (𝑟�̈� + 2�̇�𝜃)̇𝑒¥

𝑎£ = (�̈� − 𝑟�̇�D) 𝑎¥ = (𝑟�̈� + 2�̇�𝜃)̇ =
1
𝑟
𝑑
𝑑𝑡 (𝑟

D�̇�)

The acceleration 
vector

The radial component The transverse component



Example 1.9.1
A honeybee hones in on its hive in a spiral path in such a way that the radial
distance decreases at a constant rate, 𝑟 = 𝑏 − 𝑐𝑡, while the angular speed increases at
a constant rate, �̇� = 𝑘𝑡. Find the speed as a function of time.

𝑟 = 𝑏 − 𝑐𝑡

�̇� = 𝑘𝑡



𝑣 =
𝑑𝑟
𝑑𝑡 = �̇�𝑒£ 		+ 			𝑟�̇�𝑒¥

�̇� = −𝑐

�̇� = 𝑘𝑡

𝑣 =
𝑑𝑟
𝑑𝑡 = −𝑐𝑒£ 		+ 			 (𝑏 − 𝑐𝑡)𝑘𝑡𝑒¥

𝑟 = 𝑏 − 𝑐𝑡

𝑣 = [𝑐D 		+ 			 𝑏 − 𝑐𝑡 D𝑘D𝑡D]\/D

Notice	 𝑣 =c 𝑤ℎ𝑒𝑛	𝑡 = 0	 𝑟 = 𝑏

𝑤ℎ𝑒𝑛	𝑡 = 𝑏/𝑐	 𝑟 = 0



Example 1.9.2
On a horizontal turntable that is rotating at constant angular speed, a bug is
crawling outward on a radial line such that its distance from the center increases
quadratically with time 𝑟 = 𝑏𝑡D, 𝜃 = 𝜔𝑡 , where 𝑏 and 𝑡	are constants. Find the
acceleration of the bug.



We have �̇� = 2𝑏𝑡 , �̈� = 2𝑏, �̇� = 𝜔, �̈� = 0

𝑎 = (�̈� − 𝑟�̇�D)𝑒£ + (𝑟�̈� + 2�̇�𝜃)̇𝑒¥

𝑎 = (2𝑏 − 𝑏𝑡D𝜔D)𝑒£ + (0 + 2 2𝑏𝑡 𝜔)𝑒¥

𝑎 = 𝑏(2 − 𝑡D𝜔D)𝑒£ + 4𝑏𝑡𝜔𝑒¥

𝑟 = 𝑏𝑡D, 	𝜃 = 𝜔𝑡

Known 



1.10  Velocity and Acceleration in Cylindrical and Spherical 
Coordinates

𝑟 = 𝑅𝑒ª + 𝑧𝑒F

where 𝑒ª is a unit radial vector in the 𝑥𝑦 plane. 
𝑒« is the unit vector in the 𝑧 −direction.

A third unit vector 𝑒¬ is needed so that the three vectors 𝑒ª𝑒¬𝑒F	constitute a 
right-handed triad. 

Cylindrical Coordinates

In the case of three-dimensional motion, the position of a particle can 
be described in cylindrical coordinates 𝑅, 𝜙, 𝑧. The position vector is 
then written as



Unit vectors for cylindrical coordinates.

𝑘 = 𝑒FThe velocity and acceleration vectors are found by
differentiating, as before. This again involves derivatives
of the unit vectors. An argument similar to that used for
the plane case shows that

𝑑𝑒ª
𝑑𝑡 = 𝑒¬�̇�

𝑑𝑒¬
𝑑𝑡 = −𝑒ª�̇�

𝑟 = 𝑅𝑒ª + 𝑧𝑒F 𝑣 = �̇�𝑒ª + 𝑅
𝑑𝑒ª
𝑑𝑡 + �̇�𝑒F

The unit vector does not change in direction, 
so its time derivative is zero.

HWs

𝑎 = �̈� − 𝑅�̇�D 𝑒ª + 2�̇��̇� + 𝑅�̈� 𝑒¬ + �̈�𝑒F

HWs
𝑣 = �̇�𝑒ª + 𝑅𝑒¬�̇� + �̇�𝑒F



Spherical Coordinates

Unit vectors for spherical coordinates.

𝑣 = 𝑒£�̇� + 𝑒¬𝑟�̇� sin𝜃 + 𝑒¥𝑟�̇�

𝑎 = �̈� − 𝑟�̇�D𝑠𝑖𝑛D𝜃 − 𝑟�̇�D 𝑒£

+(𝑟�̈� sin 𝜃 + 2�̇��̇� sin𝜃 + 2𝑟�̇��̇� cos 𝜃)𝑒¬

+(𝑟�̈� + 2�̇��̇� − 𝑟�̇�D sin 𝜃 cos𝜃)𝑒¥

HWs

HWs



Example 1.10.1
A bead slides on a wire bent into the form of a helix, the motion of the bead being
given in cylindrical coordinates by 𝑅 = 𝑏, 𝜙 = 𝜔𝑡, 𝑧 = 𝑐𝑡. Find the velocity and
acceleration vectors as a function of time.

𝑅 = 𝑏 �̇� = �̈� = 0

𝜙 = 𝜔𝑡

𝑎 = �̈� − 𝑅�̇�D 𝑒ª + 2�̇��̇� + 𝑅�̈� 𝑒¬ + �̈�𝑒F𝑣 = �̇�𝑒ª + 𝑅𝑒¬�̇� + �̇�𝑒F

�̇� = 𝜔 �̈� = 0

𝑧 = 𝑐𝑡 �̇� = 𝑐 �̈� = 0

𝑣 = 𝑏𝜔𝑒¬ + 𝑐𝑒F

𝑎 = −𝑏𝜔D𝑒ª
Thus, in this case both velocity and acceleration are constant in magnitude, but they vary 
in direction because both 𝑒¬	and 𝑒£ change with time as the bead moves 



Example 1.10.2
A wheel of radius 𝑏 is placed in a gimbal mount and is made to rotate as follows.
The wheel spins with constant angular speed 𝜔\ about its own axis, which in turn
rotates with constant angular speed 𝜔D	about a vertical axis in such a way that the
axis of the wheel stays in a horizontal plane and the center of the wheel is
motionless. Use spherical coordinates to find the acceleration of any point on the
wheel. In particular, find the acceleration of the highest point on the wheel.

𝑟 = 𝑏 �̇� = �̈� = 0

𝜃 = 𝜔\𝑡

𝜙 = 𝜔D𝑡

�̇� = 𝜔\ �̈� = 0

�̇� = 𝜔D �̈� = 0



𝑎 = �̈� − 𝑟�̇�D𝑠𝑖𝑛D𝜃 − 𝑟�̇�D 𝑒£

+(𝑟�̈� sin 𝜃 + 2�̇��̇� sin𝜃 + 2𝑟�̇��̇� cos 𝜃)𝑒¬

+(𝑟�̈� + 2�̇��̇� − 𝑟�̇�D sin 𝜃 cos𝜃)𝑒¥

𝑎 = −𝑏𝜔DD	𝑠𝑖𝑛D𝜃 − 𝑏𝜔\D 𝑒£ − 𝑏𝜔DD sin𝜃 cos𝜃 𝑒¥ + 2𝑏	𝜔\𝜔D cos𝜃 𝑒¬

The point at the top has coordinate 𝜃 = 0, so at that point 

𝑎 = −𝑏𝜔\D𝑒£ + 2𝑏	𝜔\𝜔D𝑒¬

The first term on the right side is the centripetal acceleration. 
The last term is a transverse acceleration normal to the plane 
of the wheel. 
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𝐶 = 𝐴 − 𝐵 = 𝑖 − 𝑗 + 𝑘𝐴𝑛𝑠𝑤𝑒𝑟	

H. W

Express the differences in 𝒊𝒋𝒌	and the magnitude of the new vector 𝑨 −𝑩 of 
the two vectors A=(1,0,2) and B=(0,1,1)

Slide 14 
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1

(a)	𝐴 − 𝐵 = 3𝑖 − 𝑗 − 2𝑘

𝐴𝑛𝑠𝑤𝑒𝑟	

𝐴 − 𝐵 = 3D + 1D + 2D = 14

(b) A. B = AB cosθ

𝐵 cos𝜃 = ®.¯
®

𝐵 cos𝜃 = ([D°±[\)
\²°D²°\²

𝐵 cos𝜃 = K
±



	 𝑐 cos𝜃 =
𝐴. 𝐵
𝐴 𝐵 cos𝜃 =

−2+ 6 − 1
6 14

cos𝜃 =
3

2 7

𝜃 = 𝑐𝑜𝑠[\(
3

2 7
) 𝜃 ≈ 71w

	 𝑑 	𝐴×𝐵 =
𝑖 𝑗 𝑘
1 2 −1
−2 3 1

𝐴×𝐵 = 5𝑖 + 𝑗 + 7𝑘

					𝐴 + 𝐵 = −𝑖 + 5𝑗	 𝑒 	𝐴 − 𝐵 = 3𝑖 − 𝑗 − 2𝑘

(𝐴 − 𝐵)×(𝐴 + 𝐵) =
𝑖 𝑗 𝑘
3 −1 −2
−1 5 0

= 10𝑖 + 2𝑗 + 14𝑘



2

(a)	𝐴 + 𝐵 = 𝑖 + 2𝑗 + 𝑘 𝐴 + 𝐵 = 6

(b)	3𝐴 − 2𝐵 = 3𝑖 + 3𝑗 − 2𝑗 − 2𝑘 3𝐴 − 2𝐵 = 3𝑖 + 𝑗 − 2𝑘

(c)	𝐴. 𝐵 = 1 0 + 1 1 + (0)(1) 𝐴. 𝐵 = 1

(d)	𝐴×𝐵 =
𝑖 𝑗 𝑘
1 1 0
0 1 1

𝐴×𝐵 = 𝑖 1 0
1 1 − 𝑗 1 0

0 1 + 𝑘 1 1
0 1

𝐴×𝐵 = 𝑖 − 𝑗 + 𝑘 𝐴×𝐵 = 3

𝐴𝑛𝑠𝑤𝑒𝑟	



3

𝐴 = 𝑖𝑞 + 3𝑗 + 𝑘 𝐵 = 𝑖𝑞 − 𝑞𝑗 + 2𝑘

A. B = 0

(𝑖𝑞 + 3𝑗 + 𝑘). (𝑖𝑞 − 𝑞𝑗 + 2𝑘) = 0 𝑞D − 3𝑞 + 2 = 0

𝑞 − 2 𝑞 − 1 = 0
𝑞 = 2
𝑞 = 1

𝐴𝑛𝑠𝑤𝑒𝑟	



Extra HW

𝐴𝑛𝑠𝑤𝑒𝑟	

𝑎 = 0, 𝑎 = 1



Extra HW

𝐵 − 𝐴 = 4𝑖 + 2𝑗 − 3𝑘 − (𝑖 + 2𝑗 − 2𝑘) 𝐵 − 𝐴 = 3𝑖 − 𝑘

𝐵 − 𝐴 = 9+ 1 = 10

cos𝜃 =
𝐴. 𝐵
𝐴 𝐵 =

𝑖 + 2𝑗 − 2𝑘 . (4𝑖 + 2𝑗 − 3𝑘)
3 29

= 0.867

𝜃 = 30w

𝐴𝑛𝑠𝑤𝑒𝑟	



HW
Slide 37 

𝑀 =
cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0
0 0 1

𝑀 =
cos30 sin 30 0
− sin30 cos30 0

0 0 1

𝑀 =

3
2

1
2 0

−
1
2

3
2 0

0 0 1

A#r
A%r
A&r

=

3

2

1

2
0

−
1

2

3

2
0

0 0 1

𝐴C
𝐴E
𝐴F

𝐴𝑛𝑠𝑤𝑒𝑟	



A#r
A%r
A&r

=

3
2

1
2 0

−
1
2

3
2 0

0 0 1

2
3
−1

A#r =
3
2 2 +

1
2 3 + (0)(−1)

A%r = −
1
2 2 +

3
2 3 + (0)(−1)

A&r = 0 2 + 0 3 + (1)(−1)

A#r =
2 3 + 3

2 = 3.232

A%r =
−2+ 3 3

2 = 1.598

A&r = −1

𝐴 = 3.232	𝑖q + 1.598	𝑗q − 𝑘q
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1

𝜐 =
𝑑𝑟
𝑑𝑡 = −𝑖𝑏𝜔 sin𝜔𝑡 + 𝑗2𝑏𝜔 cos𝜔𝑡

𝐴𝑛𝑠𝑤𝑒𝑟	

𝜐 = (𝑏D𝜔D sinD 𝜔𝑡 + 4𝑏D𝜔D cosD 𝜔𝑡)\/D

𝜐 = 2𝑏𝜔𝑡 = 0

𝜐 = 𝑏𝜔𝑡 =
𝜋
2𝜔



2

𝜐 =
𝑑𝑟
𝑑𝑡 = 𝑖𝑏𝜔 cos𝜔𝑡 − 𝑗𝑏𝜔sin 𝜔𝑡 + 2𝑘𝑐𝑡

𝑎 =
𝑑𝜐
𝑑𝑡 = −𝑖𝑏𝜔D sin 𝜔𝑡 − 𝑗𝑏𝜔D cos𝜔𝑡 + 2𝑘𝑐

𝑎 = (𝑏D𝜔¸ sinD 𝜔𝑡 + 𝑏D𝜔¸ cosD𝜔𝑡 + 4𝑐D)\/D

𝑎 = (𝑏D𝜔¸ + 4𝑐D)\/D Constant 



HWs

1

2

Slide 65



1

𝜐 = �̇�𝑒£ + 𝑟�̇�𝑒¥ 𝑎 = (�̈� − 𝑟�̇�D)𝑒£ + (𝑟�̈� + 2�̇�𝜃)̇𝑒¥

�̇� = 𝑏𝑘𝑒¹º �̈� = 𝑏𝑘D𝑒¹º

�̇� = 𝑐 �̈� = 0

𝜐 = 𝑏𝑘𝑒¹º𝑒£ + 𝑏𝑐𝑒¹º𝑒¥ 𝑎 = 𝑏(𝑘D − 𝑐D)𝑒¹º𝑒£ + 2𝑏𝑐𝑘𝑒¹º𝑒¥



𝜐. 𝑎 = 𝑏D𝑘 𝑘D − 𝑐D 𝑒D¹º + 2𝑏D𝑐D𝑘𝑒D¹º

𝜐 = 𝑏𝑒¹º(𝑘D + 𝑐D)\/D 𝑎 = 𝑏𝑒¹º((𝑘D−𝑐D)
\
D + 4𝑐D𝑘D)\/D

cos 𝜃 =
𝜐. 𝑎
𝜐 𝑎 cos𝜃 =

𝑘
(𝑘D + 𝑐D)\/D

Constant 



2

𝑣 = 𝑒£�̇� + 𝑒¬𝑟�̇� sin𝜃 + 𝑒¥𝑟�̇�

�̇� = 0 �̇� = 𝜔 �̇� =
𝜋
2 [−𝜔 sin4𝜔𝑡]


